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SUMMARY 

ATaylor series augmentation of a weak statement (a ‘Taylor weak statement’ or ‘Taylor-Galerkin’ method) is used 
to systematically reduce the dispersion error in a finite element approximation of the one-dimensional transient 
advection equation. A frequency analysis is applied to determine the phase velocity of semi-implicit linear, 
quadratic and cubic basis one-dimensional finite element methods and of several comparative finite difference/ 
finite volume algorithms. The finite element methods analysed include both GaIerkin and Taylor weak statements. 
The frequency analysis is used to obtain an improved linear basis Taylor weak statement finite element algorithm. 
Solutions are reported for verification problems in one and two dimensions and are compared with finite volume 
solutions. The improved finite element algorithms have sufficient phase accuracy to achieve highly accurate linear 
transient solutions with little or no artificial diffusion. 
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1. INTRODUCTION 

Application of the Galerkm finite element method (FEM) to parabolic and hyperbolic differential 
equations has presented difficulties with the control of dispersion error. Dispersion error results fiom 
shorter-wavelength solution components travelling at the wrong speed, usually too slowly. Waves 
travelling at the wrong speed eventually appear in the wrong place as extraneous short waves and can 
lead to instability in a non-linear problem statement. 

The ‘upwind’ finite volume method has been extensively applied either to reduce dispersion error or 
to artificially &&se the resulting short waves. The interpolation is biased for greater contribution fiom 
the direction of the velocity. It originated with the donor cell method of Courant et af. in 1952 and was 
applied to the FEM in the 1970s as the Petrov-Galerkin methods of Christie et ~ 1 . ~ 9  and Heinrich et 
~ 1 . ~ 3 ~  Early Petrov-Galerkin methods suffered from excess diffusion of the solution and later work has 
been oriented towards reducing the excess diffusion, including the SUPG method of Brooks and 
Hughes6 in 1980 and the methods of Dick7 in 1983, Westerink and Sheas in 1989, Bouloutas and 
Celia9 in 199 1 and Konda et al. lo in 1992. Similar work in the finite volume method is typified by the 
QUICK methods of Leonard” in 1979 and Leonard and Mokhtari12 in 1992. 

Many upwind methods still cause excess diffusion and some also cause an undesirable increase in 
the width of the matrix stencil, thus increasing the computational effort. An alternative approach which 
avoids these problems originated for the finite volume method with Lax and WendroP3 in 1960. The 
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Lax-Wendroff method uses the governing equation in a semi-discrete method to cancel error terms in 
time and space. It was applied to a finite volume method by Stone and Brian14 in 1963 and Harten and 
Tal-Ezer" in 198 1. Similar corrections were made to a finite element method by van Genuchten and 
GrayI6 in 1978 and became generally known as the Taylor-Galerkin method of Donea17 in 1984. The 
method was extended as the Taylor weak statement of Baker and Kim'8 in 1987. 

The frequency analysis of von Neumann and Richtmeyer" in 1950 was originally derived to 
determine stability and was extended by Stone and Brian14 to determine the phase velocity and 
dispersion error for a finite difference method. The frequency analysis was applied to various forms 
of the FEM by Vichnevetsky and De Schutte?O in 1975, Gray and Pindes' in 1976, Raymond and 
Garde?2 in 1976, Gresho et aLZ3 in 1978, Chin et aL24 in 1979, Wait and Mitchell25 and Cathers 
and O'C~nno?~ in 1985, Baker and Kim'8 and Gresho and Lee2' in 1987 and Donea et a1.28 in 
1987. Vichnevetsky and De Schutter?O Raymond and Garde?' and Baker and Kim'' each attempted 
some optimization of parameters to reduce dispersion error in linear basis finite elements. 
Vichnevetsky and De Schutter?O Gray and Pinder?l Gresho et ~ l . , ' ~  Cathers and O'Connor?6 Wait 
and Mitchell25 and Gresho and Leez7 each applied various analyses to quadratic basis finite 
elements. Vichnevetsky and De Schutte9' and Gresho et al.23 analysed Hermite cubic basis finite 
elements. 

In this paper the frequency anlaysis is extended to fully discrete Taylor quadratic basis and Galerkin 
Lagrange cubic basis finite elements in one dimension and is compared with known results for several 
finite difference and linear basis finite element methods. In addition, a multiple-step Taylor linear basis 
finite element method is optimized for phase accuracy. The resulting algorithms are tested on 
verification problems in one and two dimensions. 

2. TAYLOR WEAK STATEMENT 

Considering approximate solutions to the one-dimensional unsteady linear advection-difision 
equation, 

84 a9 $4 L(q)  = - + u - - & - = O .  
at ax ax2 

Assuming sufficient continuity and semi-discretizing in time, two forward Taylor series are used, the 
first for a full time step of At and the second for a partial time step of ( 1  - a)At: 

n f l - a -  n dq" ( 1  - u ) ~ A :  84'' (1 - b q "  
2 at2 + 6 at3 -9 + ( 1  - u)A, -+ at 

( 1  - N ) ~ A ;  $4" 

4 

+ 24 dt'lfW3. (3) 

The corresponding backward series are also used 
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Eliminating third-order terms between the four series and substituting 8 = (a + 1)/3 for < 8 < 3, 

(6) 

The left-hand side of (6) is the standard &implicit method approximation to (1) and the right-hand side 
is a correction resulting from the replacement of lower-order truncation errors. With 8 = f , f , or 3 the 
resulting correction is equivalent to various Pad6 approximations. Assuming sufficient continuity, the 
time derivatives in (6) may be replaced with space derivatives using (1) in the manner of Lax and 
WendroE 

at (-,.+,..) a x  ax2 q, (7) 

ax2 q =  u - 2 u & - + &  - -. (8) a x  a 2 " ) " q  ax2 ax2 

dt'= " 4  ( - . ~ + . - ) ( - u - + & ~ )  a #  a ( 2  

d X 2  a x  

Additional terms would be required in (7) and (8) for the non-linear case of u = q, not considered here. 
Substituting in (6) and neglecting terms of U ( e 2 ,  A:), 

(9) 

For 8 = 4 

(10) 

In this paper the trapezoidal rule of 8 = f is used to define a non-diffusive algorithm concentrating 
only on reduction of dispersion error. An artitificial diffusion mechanism may be necessary for a non- 
linear problem statement. 

Assuming the existence of appropriate initial and boundary conditions and writing (10) as a weak 
statement on region R with test function $;, 

The Galerkin method uses the trial function $j ,  identical with $i where i = j ,  to support a semi-discrete 
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approximation qh over J nodes: 

Fully discrete approximations are defined at adjacent time levels as 

= Qj( t ) ,  G" = Q j ( t  + At). (13) 

Substituting (12) and (13) in ( l l ) ,  assuming 4 is once-differentiable, using Green's theorem and 
neglecting boundary integrals, 

Defining global integrals as follows allows a compact matrix notation shown at time level n: 

Defining the Courant number C = uAf/Ax and a dimensionless diffusion coefficient E* = e / (u2At)  
and substituting in (14) yields a matrix statement 

(@" - Q") + (@" + Q") = 0. (16) 

Separating Q"" and Q" yields 

(17) 

The global matrix integrals M, U, K, and E are normally evaluated using a finite element method of 
the desired basis degree. In the FEM the test hc t ions  4 are supported (non-zero) only locally on each 
element and the global matrix integrals are assembled from the local evaluations. Using a linear basis 
finite element method, (1 7) is equivalent, when E* = 0, to the fourth-order linear basis FEM of van 
Genuchten and Gray16 and the Crank-Nicolson Taylor-Galerkin method of Donea.17 Similar forms 
may also be obtained from the non-diffusive Petrov-Galerkin methods of Dick7 and Bouloutas and 
Celia? from the finite difference method of Harten and Tal-Ezer" or from the Taylor weak statement 
(TWS) finite element method of Baker and Kim.'* Rearranging Baker and Kim's equation (30), 

[M + (8 - a)CU + (7 + /W)C2K + p8c3E]@+' 

= {M - ( 1 - 8 + a)CU + [y - f i (  1 - 8)]C2K - p( 1 - 8)C3E}Q". (1 8) 

Setting 8 = # and comparing with (17) defines the constants in the TWS form: 

f i  = &*, 12 ' p = f e* /3 .  (19) y = -I a = 0, 
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Baker and Kim defined the physical diffision E* = 0 and defined the constant B to represent a variable 
artificial diffision coefficient, used here to be added to the physical dlffision E*.  Baker and Kim's 
second-order dispersion correction y is also used here, but the third-order term containing p and E will 
be dropped, since the focus is on the case of zero or very small physical diffision E* and since retaining 
the third-derivative approximation produces an undesirable increase in matrix bandwidth for the linear 
basis finite element method. 

Substituting the redefined constants in (17) with 6 = 4 yields a modified form of the Taylor weak 
statement: 

[M+zu+ C ( y + Y ) C 2 K ] p + '  = k - - ; U +  ( y - Y ) C 2 K ] @ .  (20) 

3. FREQUENCY ANALYSIS 

The familiar 'von Neumann' frequency analysis is readily applied to a compact discrete approximation 
of a one-dimensional differential equation. Although the method was originally used to determine 
stability, the concentration here is on phase accuracy. Physical and artificial diffision will be neglected 
in this section ( E  = E* = f l  = 0), since small diffision terms have little effect on phase velocity. 
Considering the kth single mode of the Fourier series expansion of a spatially semi-discrete 
approximation, designed qk, at time t and location x = jAx, 

4k0'AXx, t )  = exp{jwkljAx - G(w)~] } -  (21) 
Only a single generic Fourier mode need be considered, since (1) and its approximations are linear and 
boundary conditions are assumed periodic. Omitting the subscript k, the mode qh travels at a phase 
velocity U which is generally a complex h c t i o n  of w. Each mode of a similar expansion of the 
analytical solution, q, has a real constant velocity u. The phase velocity of the semi-discrete 
approximation is U(w)  and a relative phase velocity, ideally equal to unity, is defined as 

Some authors use phase error (U(w)  - u )  or relative phase error (Oh - l), both ideally zero. 

levels t and t + At: 
The amplification factor ch of the l l l y  discrete approximation is defined as its ratio at adjacent time 

Using a tridiagonal (linear basis) method with constant nodal spacing as an example, the approximate 
solution at an interior node is written as a recursion relation between times nA, and (n + l)At and 
nodes ( j  f l)A,.: 

Substituting a dimensionless wave number m for wAx, assuming U and Ax constant over the stencil and 
substituting (21) at the same time level yields 

ej- ,  = Q(X - A,.) = Qj exp(-iwAx) = Qj e-"", 

Q,+ 1 = Q(x + A,.) = Qj exp(+iwAx) = Qj e+h. (25) 

Substituting (22), (24) and (25) into (23) yields a computable form for the amplification factor in terms 
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of constants, the wave number in and the relative phase velocity: 

The amplification factor is a complex-value scalar and stability requires that its modulus I Ghl 5 1. The 
relative phase velocity is calculated from (26) using (22): 

,, - tan-' [Im(Gh)/Re(Gh)] 
O -  

-mC 

The amplification factor and phase velocity were calculated as functions of m and C using the 
symbolic computer language Mac~yma.'~ 

The procedure differs slightly for quadratic and cubic basis finite elements, which produce varying 
matrix stencils for element vertex nodes and element interior nodes. Following Wait and Mit~hell?~ 
the equivalent finite difference stencil is arranged as an n x n matrix for n-degree basis FEM. The n 
eigenvalues of the matrix become the values of Gh. One eigenvalue is the principal value, generally the 
one having positive relative phase velocity. 

4. CALCULATION OF FREQUENCY ANALYSIS 

4. I. One-dimensional linear basis finite elements 

The well-known frequency analysis for the linear basis (superscript '1') FEM is presented here for 
comparison. With element integrals assembled on a uniform grid to an equivalent finite difference 
stencil and using (25) to eliminate Qj*l, the global matrix integrals from (15) become 

K'Q = s,(K;)Q = se - { e-i'}Q,, (30) (:[-: -:])Q=Ax[-l  2 -11 e+im 

The assembled matrices M',U' and K' are scaled finite element equivalents of the finite difference 
operators I + d2/6, 6 and -d2 respectively. Substituting (28x30) into (20) and (26) with E* = 0 (zero 
physical diffusion) and 8 = 4 yields the amplification factor 
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With p = 0 the phase velocity is 

4.2. One-dimensional quadratic basis finite elements 

Assembled Lagrange quadratic basis (superscript 'q') element integrals on a uniform grid are shown 
below. The assembled stencils are shown on the right-hand sides, with the upper row in the two-row 
matrices representing an element vertex node and the lower row a mid-element node: 

30 MqQ = Se(Ms)Q = Se 4 2 16 2 1  z])Q="[-' -'I 15 0 0 2 1 6  2 
1 2 4  

-3 4 -1 

uqQ=&(Uz)Q=Se($[ 4 0 0 - 4 0  4 

1 -4 

e-2im 

e-im 

1 
e+im 

e+2im 

e-2im 

e-im 

1 
e+im 

e+2im 

e-2im 

e-im 

1 
e+im 

e+2im 

Qj? (35) 

In the form used by Wait and Mitchell25 to compute the amplification factor, the matrix stencils 
become 

The amplification factor becomes a complex-valued 2 x 2 matrix with entries of (36)-(38): 
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With /3 = 0 the phase velocity is 

Csin(m)[d{(2 + 5yC2)[18 + 45yC2 + (2 + 15yC2) sin2(m)]} f (4 - 15yC2) cos(m)]I 
4[(1 - 4yC2 + 15y2C4) sin2(m) + (1 + 15yC2)] 

with the principal root having the negative sign. Gresho and Lee's27 relation between semi-discrete and 
trapezoidal rule phase velocity was used to simplify (32) and (40). 

4.3. One-dimensional cubic basis finite elements 

The analysis for the cubic basis (superscript 'c') FEM is similar to that for the quadratic basis, 
except that Lagrange elements span four nodes with three different stencils, shown as the rows of the 
matrices on the right-hand sides below: 

99 648 -81 -36 

1680 -36 -81 648 99 
McQ =S, I I 

\ 1 19 -36 99 128 

r i g  -36 99 256 99 

)I 
-36 191 

0 0 99 648 -81 -36 ='I 0 0 -36 -81 648 99 

VcQ =S, [ 2 
-40 57 -24 7 
-57 0 81 24 

24 -81 0 57 
-7 -24 -57 40 

Q 

0 0 0 24 -81 0 57 7 1  

-7 24 -57 0 57 -24 
=&[ 80 0 0 0 -57 0 81 -24 

e-3im 

e-2im 

e-im 

1 
e+im 

e+2im 

e+3im 

' e-3im 

e-im 

e-2im 

1 
e+im 

e+2im 

e+3im 

Q j ,  (42) 
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Q 

148 -189 
-189 432 -297 

KcQ =Se I& 1 54 -297 432 -189 

[ 1 -13 54 -189 1481) 

AX 
120 

-- - 

-13 54 -189 296 -189 54 -13 
0 0  o -189 432 -297 541 

0 0  0 -297 54 432 -189 

e-3im 

e-2im 

e-im 

e+im 

e+2im 

e+3im 

1 Qj i  (43) 

The matrix form of the amplification factor is similar to that for the quadratic basis finite element, 
equation (39), except that the matrix stencils become 3 x 3 matrices: 

256 + lg(ef3'" + e-3im) 99 efim - 36 e-2k -36 e+2im + 99 e-'m 

-36 e+2im + 99 e-'m 648 -81 efim 

99 efim - 36 e-2im -81 e-'" 648 

MC =& 
560 

. (46) 1 296 - 13(e+3" + e-3im) -189 e+'m + 54 e-2h 54 e+2h - 189 e-'m 

KC = - 54 e+2'm - 189 e-'m 432 -297 e+h 120 
Ax [ -189 e+" + 54 e-2im -297 ecim 432 

We did not obtain a sufficiently simplified closed form for the phase velocity and it was calculated at 
discrete values of C and m. 

4.4. Finite digTerence and finite volume methods 

Several finite difference and finite volume methods are included for comparison. Substituting a 
Taylor weak statement correction of y = 1 /6C2 in (20) removes the contribution of the interpolation or 
'mass' matrix M', replacing it by a scaled identity matrix and producing a method equivalent to a finite 
volume method on a uniform mesh. Improvements to finite volume methods are usually stated in terms 
of modifications to the convection operator, which in its unmodified form (6) is identical with the 
assembled linear basis finite element uniform mesh convection matrix (U'). The resulting scheme is the 
well-known Crank-Nicolson finite difference method with amplification factor 

I I 



282 D. J. CHAFFIN AND A. J. BAKER 

The group of QUICK finite volume methods has been widely used. The QUICK methods are intended 
to improve standard finite volume methods by using various forms of higher-order approximations to 
the convection term. The third-order upwind QUICK approximation'' for the first derivative, 
designated here as 6Q3, results in the following finite difference stencil with positive velocity on a 
uniform 1D mesh: 

The resulting amplification factor is 

The fifth-order upwind QUICK approximationI2 for the first derivative, designated here as 6 ~ ~ ,  results 
in the following finite difference stencil with positive velocity on a uniform 1D mesh: 

23 21 1 90 9 77 --ej-] 346 +-Q,+-Qj+1 --Qj+2- (50) 
6Q5(q) = --Qj-3 3 84 +-Qj- 3 84 384 384 384 384 

Small multidimensional terms are neglected in (50). The resulting amplification factor is 

5. RESULTS OF FREQUENCY ANALYSIS FOR EXAMPLE METHODS 

The relative velocity d' and amplification factor modulus lGhl were calculated for the example 
methods at several Courant numbers C between 0 and 1 and wave numbers m between 0 and K. The 
trapezoidal rule of 8 = f was used for time integration for each method. Phase velocity results are 
shown in Figure l(a) for a Courant number of i. 

1 

0.8 

0.6 

0.4 

0.2 

n 

cubic basis Galerkin -C+ 
quadratic basis Galerkin Q- 

linear basis Galerkin t-- 
5th order QUICK -5- 
3rd order QUICK -3- 

C-N finite difference -El-- 

" 
0 d4 rrR 3 w4 x 

Dimensionless wave number 

Figure I(a). Phase velocity of various algorithms at C = 
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Figure l(a) shows a pattern that is repeated at larger Courant numbers, in which the Crank-Nicolson 
finite difference method has the poorest phase velocity of the tested algorithms. Third-order QUICK is 
improved over Crank-Nicolson and fifth-order QUICK is improved over third-order. Linear basis 
Galerkin is better in phase velocity than each finite volume method, quadratic basis Galerkin is better 
than linear and cubic basis Galerkin is better than quadratic. The relative ranking between the six non- 
Taylor algorithms is the same at each Courant number. At this small Courant number the TWS 
correction yC2 is insignificant and the TWS methods (not shown) become essentially identical with the 
corresponding Galerkin methods. 

Additional results are shown in Figures l(b) and l(c) for Courant numbers of f  and 1 respectively. 
The trend in Figures 1 (b) and 1 (c) is similar to that in Figure 1 (a) except that the three TWS algorithms 
become more accurate than the corresponding Galerkin algorithms as the Courant number approaches 
unity. The other six algorithms become less accurate as the Courant number increases. At C = 1 all 
three TWS algorithms become very accurate in phase velocity for almost the entire range of wave 
number. The TWS algorithms were roughtly optimized for phase velocity by varying the constant y as 
- 1 / 12 for linear basis, - 1 / 15 for quadratic basis and - 1 / 18 for cubic basis. The discrete time Taylor 
series of (1 0) predicted that the value should be - 1 / 12. 

I I 

?' 0.8 . 

8 3 0.6 . 
- s 
.a a i 0.4 - 

0.2 . 

%... 
% 

..._ 
-%. 

-I% '-. 
cubic basis TWS --V-- 

cubic basis Galerkin + 
quadratic basis TWS -tf- 

quadratic basis Galerkin -Q- 
linear basis TWS +- 

linear basis Galerkin +- 
5th order QUICK -+ 
3rd order QUICK -3- 

C-N finite difference -N-- 

" 
0 x/4 rd2 3 x/4 A 

Dimensionless wave number 

Figure I@). Phase velocity of various algorithms at C = f 
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quadratic basis TWS -tf-- 

cubic basis Galerkin -t+ 
quadratic basis Galerkin -Q- 

linear basis Galerkin +- 
5th order QUICK -5- 
3rd order QUICK -3- 

cubic basis TWS -V-- 

0 x/4 rrR 3 x/4 A 
Dimensionless wave number 

Figure l(c). Phase. velocity of various algorithms at C = 1 



284 D. J. CHAFFIN AND A. J. BAKER 

The Crank-Nicolson finite difference algorithm and each of the six finite element algorithms are 
non-diffusive and have an amplfication factor modulus identically equal to unity. The amplification 
factor modulus is shown in Figure 2 at C = 1 for the QUICK methods and for a comparative linear 
upwind finite difference method, using y = 1/6C2 in (20) to replicate a finite difference method and an 
artifical diffusion term /3 = 1 /2C to eliminate the downstream (e+’“) term in the numerator of (3 1). 
Also shown for comparison are dissipative linear basis Galerking finite element methods with /3 = i, a, 
and $, which produce a level of short-wavelength dissipation comparable with that of the third-order 
and fifth-order QUICK methods and the linear upwind method respectively. 

Figure 2 confirms that the QUICK methods are dissipative, since each modulus is uniformly less 
than unity, but are less dissipative than the linear upwind finite difference method. Dissipation at large 
wave numbers approaching .n is considered advantageous for stability, since 2Ax waves are damped 
accordingly. The linear upwind method also has significant dissipation at wave numbers as small as 
~ / 4 ,  indicating that every solution component is heavily damped and accuracy is compromised. The 
trend is similar at other Courant numbers (results not shown). Each of the listed dissipative algorithms 
becomes more dissipative at higher Courant number. 

6. FIFTH-ORDER-ACCURATE LINEAR BASIS TWS FINITE ELEMENT METHOD 

The phase velocity results in Figures l(akl(c) show that the linear basis TWS correction of 
y = -1/12 onto C2 is most effective for C = 1, at which value the method has the correct phase 
velocity over most of the range of wave number m. The TWS correction is less effective at smaller 
Courant numbers. This is illustrated by a Taylor expansion of the amplification factor Gh in powers of 
the wave number m about m = 0: 

- im5C[45@ + 60yC2(1 - 9C2) + 720y2C4 - 41 
720 

- m6C2[45C4 + 120yC2(1 - 6C2) + 2160y2C4 - 81 + . . .  . 
1440 

1 

-.. 
linear basis TWS f.e.. beta=1/8 

5th order QUICK f.v. -5- 
linear basis TWS te., beta=1/6 -M- 

3rd order QUICK tv .  3-  
hear basis TWS f.e., beta=l/3 -N-- 

Linear upwind f.v. .U- 

0 ‘  I 
0 d 4  m 3 K/4 x 

Dimensionless wave number 

Figure 2. Amplification factor modulus of dissipative algorithms at C = 
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This is compared, following the procedure of Baker and Kim,18 with a similar expansion of the 
analytical amplification factor G: 

f- + .. (53) 

The analytical series (53) converges slowly for large wave numbers and Courant numbers, since the 
eighth-order term has a magnitude of about 0.23 and the 10th-order term a magnitude of about 0.03 for 
m = and C = 1. An accurate approximation at a Courant number near unity would then require 
about 10-12 orders of accuracy. Comparing equations (52) and (53), the Galerkin linear basis method 
with y = 0 is second-order-accurate in wave number. The linear basis TWS method with y = - 1 / 12 is 
fourth-order-accurate in wave number, except for the special case of C = 1 which is at least 12th- 
order-accurate. 

Phase accuracy can be improved by adapating an idea from the early work of Stone and Brian.I4 A 
two-step method is defined, one step with phase velocity too high and the other step with phase 
velocity too low, such that the mean phase velocity is approximately correct for an even number of 
steps. Defining a variable TWS correction term y to be used at alternating time steps allows equations 
(52) and (53) to be equated to order five, yielding 

[ ((4 - 5c2 + "') 1/21 

5 
y = - -  l f -  (54) 

The sixth-order term, also quadratic in y,  cannot be satisfied simultaneously in this form, since it 
requires 

y = - -  I f -  1 2(4-5C2+@) ) "I . 1: [ C2( 15 

For C = f the solution of the fifth-order equation (54) is 

1 
12 

y = - - ( 1  f 3 ) .  

( 5 5 )  

This method will be referred to here as the 'fifth-order' linear basis TWS method, not to be confused 
with the differently measured order of the 'fifth-order QUICK' method. The relative phase velocity of 
the individual steps of the fifth-order method is shown in Figure 3. 

The phase velocity of the 'odd' steps in Figure 3 is higher than unity, decreasing with Courant 
number. The phase velocity of the 'even' steps is smaller than unity, increasing with Courant number, 
such that the mean phase velocity is nearly unity. Resulting mean phase velocities are shown in Figure 
4 and compared with those of the fourth-order T W S  method. 

Figure 4 shows that the fifth-order mean phase velocities are slightly high for C < 4, correct for 
C = 3 and slightly low for C > i, The fourth-order TWS phase velocity is lower than the fifth-order at 
each Courant number. 
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Figure 3. Individual step phase velocities of two-step linear basis algorithms 
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Figure 4. Phase velocity comparison between linear basis fifth-order mean and fourth-order 

7. LINEAR BASIS TWS FINITE ELEMENT METHOD WITH APPROXIMATELY MINIMIZED 
PHASE ERROR 

The preceding phase velocity results (and verification problem results to be discussed) show that the 
fifth-order method, while improved over the standard fourth-order method, is not optimal except at 
C = f. Higher-order matching of the amplification factor expansion does not appear practical for the 
10 or so significant terms at Courant number near unity. The fifth-order method has the additional 
disadvantage of lacking diagonal dominance for C > i. 

This section shows an alternative development of minimizing the error in phase velocity rather than 
exactly matching a low-order expansion of the amplification factor. Again we use a multiple-step 
method, with two steps for C < f and four steps for C > $. The phase error from (32) does not appear 
to have a known analytical integral over m, so we numerically integrate the phase error over m from 0 
to n for many possible values of y and combine the steps so as to minimize the phase error in some 
manner. Following the accuracy criterion of Vichnevetsky and De Schutter?O we arbitrarily pick the 
numerical solution (yl , yz )  which maintains 1% phase accuracy over the widest possible range of m. 



TAYLOR WEAK STATEMENT FINITE ELEMENT METHODS 287 

This range turns out to be from m = 0 to about 3x14 for most values of C. The individual steps are 
combined as (yl , y2) for two-step solutions (C < f) and (yl ,  yl, yl, y2) for four-step solutions (C > i). 
The selected values of y at various Courant numbers are then curve fitted to Courant number for C 5 f 
as 

1 0.07025 - 0.02609C2 - 0.00982C3 
(Yl, Y 2 )  = -E+ cz 

and for C > 4 as 

y2 = -0.061 + 0.793( 1 - C) - 0.792( 1 - C)2 

1 
12 

y2 = - - + 0-3427( 1 - C) + 1-3364(1 - C)’. 

This approximate procedure is not represented to be the ‘best’ solution of this type, but as a ‘good’ 
solution for phase accuracy. The resulting phase velocity, the mean of two or four steps, is shown in 
Figure 5 for various Courant numbers. Note the highly expanded ordinate scale. 

The preceding figures show that the approximately optimized method maintains better than 1% 
accuracy in phase velocity up to wave numbers of at least 3n/4 for the Courant numbers shown. The 
method is superior in phase accuracy to the fourth-order and fifth-order linear basis TWS methods. 

8. ONE-DIMENSIONAL VERIFICATION PROBLEMS 

Several of the derived algorithms are verified for one-dimensional linear diffusive and non-diffusive 
transient advection. The non-diffusive verification problem is advection of a two-node wide square 
wave, with the analytical solution translation of the initial conditions, selected as 

0, 0 < x  < 0.12, 

1 ,  0.12 5 x < 0.16, (61) 
0, 0.16 5 x 5 0.96. 

1.010 

p 1.005 

Y 
‘8 - 

0.990 

C=1/8 2 step 
C=1/4 2 step ++ 

0 d 4  U i 2  3 d 4  L 
Dimensionless wave number 

Figure 5. Phase velocity of approximately optimized method at various Courant numbers 
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(a) Diflusive poblem 

Optimized linear TWS 

08 1 1.2 1.4 1 6  0.5 1 1.2 1.4 1.6 

Figure 6(a). ID verification problems, C = 4 

(‘) DiHusive poblem 
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NondiHusiw pobbm 
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Figure 6(c). ID verification problems, C = f 

(b) Dilfusive voblem 

Optimized linear TWS 
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Figure 6@). ID verification problems, C = 4 

Figure 6(d). 1D verification problems, C = 1 
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The diffusive verification problem uses a known analytical solution of (1) with the Peclet number Pe 
set at 800: 

Each problem was simulated for 0.2 I t 5 1.4 on a 40-node uniform mesh with Ax = 0.04 and time 
step varied to produce Qfferent Courant numbers. The mesh was extended to 42 nodes for cubic 
elements. The analytical solution was used as initial condition for the diffusive problem and the non- 
dissipative trapezoidal rule of 8 = 4 was used for each algorithm. The boundary conditions were 
Dirichlet at x = 0 and Neumann at x = L. The Courant numbers were :, 4, and 1, with results shown 
in Figures 6(a>d(d) respectively. 

Figure 6(a) at C = f shows that each finite element method produces relatively good solutions for 
the diffusive problem. The cubic basis Galerkin, quadratic basis TWS and optimized linear basis TWS 
methods produce relatively good solutions for the non-diffusive problem, with slight to moderate error 
waves both leading and lagging. The fifth-order TWS method produces slight leading error waves. 
Each of the finite differencelfinite volume methods produces considerable lagging error waves for the 
diffusive problem and worse lagging error waves for the non-diffusive problem. The QUICK methods 
are sIightly improved in phase lag over unmodified finite difference. 

Figure 6(b) at C = f shows much the same results. The finite differencelfinite volume results are of 
similar poor quality as those for C = f .  Each finite element solution is acceptable for the diffusive 
problem. For the non-diffusive problem each Galerkin method produces large lagging error waves. The 
linear basis TWS solution lags somewhat less than linear basis Galerkin, the quadratic basis TWS 
solution has moderate leading and lagging error and the fifth-order and optimized linear basis TWS 
solutions are nearly nodally exact. 

The trends continue in Figure 6(c) at C = t. At this higher Courant number each Galerkin solution 
has noticeable phase lag for the diffusive problem, but each TWS method has a relatively good 
solution. For the non-diffusive problem each Galerkin method has large phase lag, with quadratic basis 
slightly preferred. Standard linear basis TWS, fifth-order TWS and quadratic basis Galerkin solutions 
produce moderate error waves. The optimized linear basis TWS solution is not nodally accurate, as 
occurred at C = f, but is superior to the other solutions. 

In Figure 6(d) at C = 1 only the TWS methods produced reasonably good solutions to either 
diffusive or non-diffusive problems. The standard linear basis TWS and the fifth-order and optimized 
linear basis TWS methods produce nodally identical solutions to the non-diffusive problem, while the 
quadratic basis TWS solution produces moderate leading and lagging error waves. 

9. TWO-DIMENSIONAL NON-DIFFUSIVE VERIFICATION PROBLEM 

A classical two-dimensional verification problem simulates a half-wave cosine hill distribution on a 
rotational flow field (a ‘rotating cone’). The analytical solution is circular translation of the non-zero 
initial condition. The centre of the cone was located initially at r = 5L/ 16 on a square grid of 32 x 32 
bilinear or 16 x 16 biquadratic basis finite elements. The cosine hill distribution peak was 100 and 
spanned six linear elements in each Cartesian direction, or five non-zero nodes and two zero nodes. 
The simulation duration was one rotation or 2071/C time steps for Courant number at the cone peak. 
Boundary conditions were Dirichlet fixed at zero on inflow boundaries and Neumann on outflow 
boundaries. The time-split matrix factorization algorithm3’ was used to produce a quasi-one- 
dimensional alternating direction solution process. The trapezoidal rule of 0 = 1 was used for each 
algorithm. 
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Two-dimensional simulation errors are summarized in Figure 7. Each group of four bars represents 
results at C = d ,  4, $ and 1. The maximum relative error in minimum value, or magnitude of the largest 
negative wave, is shown in Figure 7(a). Third-order QUICK and the four TWS algorithms are the most 
accurate in this measure. 

The maximum relative error in maximum value, or deviation of the largest wave from the analytical 
solution, is shown in Figure 7@). Quadratic Galerkin and the four TWS algorithms are the most 
accurate in this measure. 

The mean RMS error is also shown for the 1021 unconstrained nodes in Figure 7(c). The four TWS 
algorithms are the most accurate in this measure. 

Selected simulation results are also illustrated in Figure 8 for C = i, with Figure 8(a) showing the 
initial condition and identical analytical solution after one rotation. The Crank-Nicolson (C-N) finite 
difference solution in Figure 8@) shows large trailing error waves with significant peak reductions and 
peak lag of several nodes. 

The QUICK solutions in Figures 8(c) and 8(d) are improved over Crank-Nicolson but show 
considerable phase lag and excess diffusion, particularly for the third-order QUICK method. 
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Figure 7(a). Error in minimum value for two-dimensionaI verification problem 
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Figure 70).  Error in maximum value for two-dimensional verification problem 
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Figure 7(c). RMS error for two-dimensional verification problem 
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Figure 8(a). Analytical solution Figure 8@). C-N finite difference, C = 4 

Figure 8(c).Thirdsrder QUICK, C = f Figure 8(d). Fiflhsrder QUICK, C = f 

Figure 8(e). Linear basis Galerkin, C = f Figure 8(f). Quadratic basis Gal&, C = f 

Figure 8Cg). Quadratic basis TWS, C = f Figure 8@). Linear basis TWS, C = f 

Figure 8(i) Fifth-order TWS solution, C = & Figure 80) optimized TWS solution, C = f 

29 1 
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The linear basis Galerkin solutions such as Figure 8(e) show considerable error waves, the quality 
deteriorating with increasing Courant number. Nodal peaks are lagging by one to two nodes. Quadratic 
basis Galerlun solutions such as Figure 8(f) are slightly improved over linear basis Galerkin. 

Quadratic basis and linear basis TWS solutions such as Figures 8(g) and 801) are considerably 
improved over corresponding Galerkin solutions, with little phase lag and small error waves. 

Fifth-order TWS solutions such as Figure 8(i) show further improvement, particularly at C = i. 
Optimized linear basis TWS solutions such as Figure 80) are the best of the various algorithms at this 
Courant number. Since the Courant number is distributed, the fifth-order and optimized TWS solutions 
are not equal as they are in one dimension at C = i. 

Figure 9 shows selected solutions at C = $. Again the linear basis TWS solution (Figure 9(b) is 
improved over linear basis Galerkin (Figure 9(a)). 

The multiple-step solutions of fifth-order TWS (Figure 9(c)) and optimized TWS (Figure 9(d)) are 
again improved over standard Galerkin and TWS solutions. 

10. CONCLUSIONS 

A phase velocity analysis for one-dimensional transient convection was performed for linear, quadratic 
and cubic basis Galerkin and TWS finite element methods as well as for finite difference and QUICK 
finite volume methods. 

Each Galerkin and TWS method was more phase-accurate than each finite difference or finite 
volume method at each Courant number up to unity. At small Courant numbers the cubic basis 
Galerlun method was the most accurate. As the Courant number approached unity, each TWS method 
became substantially more accurate than the corresponding Galerkin method. 

The trapezoidal rule linear basis TWS method was found to be fourth-order-accurate in wave 
number. A two-step linear basis TWS method was formulated to be fifth-order-accurate in wave 
number. Another two- to four-step linear basis TWS method was formulated to approximately optimize 
phase accuracy. 

Figure 9(a). Linear basis Galerkin, C = a Figure 9@). Linear basis TWS, C = 

Figure 9(c). Fifth-order T W S  solution, C = f Figure 9(d). Optimized TWS solution, C = 
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The various methods were tested on one-dimensional verification problems with small or zero 
diffusion and on a two-dimensional verification problem with zero diffusion. The relative performance 
of the methods on the verification problems correlated very well with the relative phase accuracy of the 
methods. The optimized linear basis TWS and cubic basis Galerkin methods were the most accurate on 
verification problems at small Courant number, while the several linear basis TWS methods were the 
most accurate at Courant number near unity. The optimized linear basis TWS and quadratic basis TWS 
methods had the best overall accuracy for the range of Courant numbers from zero to unity. 

Results of the verification problems also showed that the most phase-accurate methods were capable 
of producing accurate solutions to linear transient hyperbolic problems without any artificial diffusion 
or peak limiting. The tested methods may still require artificial diffusion for non-linear problems, but 
should require much less diffusion than would a standard method. In their use l l  range of Courant 
number less than unity the best of the tested methods rival or surpass the solution quality of much more 
complex methods. 
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